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The formation and the evolution of axisymmetric vortex rings in a uniformly rotating 
fluid, with the rotation axis orthogonal to the ring vorticity, have been investigated by 
numerical and laboratory experiments. The flow dynamics turned out to be strongly 
affected by the presence of the rotation. In particular, as the background rotation 
increases, the translation velocity of the ring decreases, a structure with opposite 
circulation forms ahead of the ring and an intense axial vortex is generated on the 
axis of symmetry in the tail of the ring. The occurrence of these structures has been 
explained by the presence of a self-induced swirl flow and by inspection of the extra 
terms in the Navier-Stokes equations due to rotation. Although in the present case 
the swirl was generated by the vortex ring itself, these results are in agreement with 
those of Virk et al. (1994) for polarized vortex rings, in which the swirl flow was 
initially assigned as a ‘degree of polarization’. 

If the rotation rate is further increased beyond a certain value, the flow starts to 
be dominated by Coriolis forces. In this flow regime, the impulse imparted to the 
fluid no longer generates a vortex ring, but rather it excites inertial waves allowing 
the flow to radiate energy. Evidence of this phenomenon is shown. 

Finally, some three-dimensional numerical results are discussed in order to justify 
some asymmetries observed in flow visualizations. 

1. Introduction 
A wide variety of flows of technical or geophysical interest involve the presence of 

swirl or rotation. Swirling flows of combustion chambers and cyclone separators are 
only two examples among many. Also, large-scale flows on our rotating planet are, to 
a larger or smaller extent, affected by background rotation. In the ocean, for example, 
convection-driven turbulent plumes show a complicated behaviour, in which one or 
more aligned vortices may be observed (see e.g. Ayotte & Fernando 1994). 

All these flows, however, are generally quite complex owing to a number of factors, 
like stratification, buoyancy, etc., intervening in the motion; therefore the study of 
such flows is difficult. In contrast, when a single coherent structure is subject to only 
one of the above-mentioned factors, it can be studied in detail and many insights on 
complex flows can be obtained. 

A jet or a plume can be thought of as an array of vortex rings that by their 
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interaction determine the dynamics of the whole flow. This observation motivated us 
to consider the motion of a single vortex ring subject to background rotation. Besides, 
a number of studies about the effect of a background rotation on coherent structures, 
oriented so that the system vorticity is parallel or antiparallel to the mean vorticity, 
are available in the literature (e.g. Tritton 1992; Metais et al. 1995). In contrast, much 
less analysis has been performed when the system vorticity is orthogonal to the mean 
vorticity, and the flow considered in this study belongs to this configuration. 

The motion of vortex rings has attracted a great deal of attention because, even 
though the structure of the ring is simple, its dynamics is complex. The formation 
and the evolution of vortex rings are interesting per se; however, understanding their 
dynamics also helps in unravelling more complex flows such as round jets. 

Vortex rings without azimuthal flow have been studied extensively. In contrast, 
very few works are available on vortex rings with swirl. The studies by Moffatt 
(1988) and Turkington (1989) were focused on finding steady solutions of the Euler 
equations, without investigating whether or not vortex rings with swirl were stable. 
Virk, Melander & Hussain (1994) focused more on the dynamics of vortex rings 
with helical vortex lines, showing that the presence of an azimuthal flow, regardless 
of how it is created, slows down the translation of the vortex ring. They provided 
evidence that a secondary vortex structure, oppositely signed with respect to the 
primary vortex, is created ahead of the ring. In that paper, however, the vortex ring 
was initially assigned with a prescribed azimuthal vorticity profile and circular cross- 
section; the azimuthal flow was then imposed by specifying the ‘degree of polarization’. 
Although very interesting, this initial condition is very difficult, if not impossible, to 
create in a laboratory experiment; in contrast the vortex ring in a rotating fluid is 
relatively simple to produce experimentally and, in our opinion, closer to practical 
applications. 

The aim of the present work is to investigate, by direct numerical simulations 
and laboratory experiments, how the presence of a background rotation affects the 
formation and the evolution of vortex rings generated by pushing a finite amount of 
fluid through a sharp-edged circular orifice. In this case, both azimuthal vorticity and 
velocity profiles result from the interaction between the roll-up of the thin vorticity 
layer released at the orifice-edge and the solid-body rotation. The result is that the 
vortex rings have swirl self-generated by the flow dynamics. Results have shown that 
the ring behaviour with respect to the rotation can be essentially divided into two 
regimes: ‘low’ and ‘high’ rotation. In the former the vortex ring forms in the same 
way as it forms without background rotation, and the induced azimuthal motion 
only causes minor changes in the ring dynamics. As the rotation rate increases, the 
changes become more pronounced until the effects of the rotation dominate the flow. 
It will be shown that in the ‘high‘ rotation regime the vortex ring hardly forms, and 
the energy of the flow is radiated away through inertial waves. An explanation for 
this behaviour is given. 

Finally in laboratory experiments the flow was sometimes observed to depart from 
axisymmetry. Three-dimensional numerical simulations have shown that this was due 
to a possible small initial misalignment between the axis of rotation and the direction 
of translation of the ring. 
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FIGURE 1. Sketch of the experimental apparatus: 1, rotating table; 2, glass tank; 3, fork; 4, stand; 
5, cylindrical perspex box with the circular orifice on the top and taps in the lateral surface; 6, plastic 
tubes connected to the syringes driven by the stepmotor system; 7, video camera. 

2. Experimental set-up 
2.1. Description of experimental apparatus 

In the laboratory experiments, vortex rings were created by pushing a finite amount 
of fluid through a sharp-edged circular orifice cut in a thin plate. This plate was the 
lid of a cylindrical box (henceforth referred to as the vortex generator) with a closed 
bottom. The vortex generator was placed on the bottom of a large experimental tank, 
oriented so that all rings were fired vertically upwards. Fluid was injected into the 
cylindrical can from two water taps connected by reinforced plastic tubes to a set-up 
which could depress simultaneously up to 8 syringes by a stepmotor-driven traversing 
system. In this system the volume of fluid injected is controlled by the choice of the 
syringes used, and by the displacement of their pistons. 

The vortex ring generator was placed in a glass tank of horizontal dimensions 
60x60 cm and 100 cm height. This tank was put on a rotating table, whose angular 
velocity could be varied between i2 = 0.1 s-l and Q = 1.0 s-'. The vortex ring 
generator was positioned in such a way that the axis of rotation of the rotating table 
coincided with the centreline of the orifice in the ring generator (figure 1). 

We have used two identical slide projectors to illuminate the vortex ring. A light 
sheet was created by cutting a small slit in a black slide and focusing the slide 
projectors. The projectors were mounted at some distance above the experimental 
set-up and directed downwards in such a way that the vertical light sheet crossed the 
centre of the orifice in the ring generator. A video camera fixed on the rotating table 
was used to record the experiments from the side. 

The amount and the velocity of the injected fluid was controlled by the stepmotor- 
driven traversing system which pushed the piston of the syringes. If the pistons of 
N syringes are displaced by a distance L, with a mean velocity Ds, an equivalent 
column of fluid of length Lo is pushed through the orifice with mean velocity U .  On 
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account of the incompressibility of the fluid, we obtained the following relationships 
between these parameters : 

L o = N L , ( 2 ) ,  2 . = N u s ( ; ) ,  2 

where D, and Do denote the diameter of each syringe and of the orifice, respectively. 
In our experiments we used 4,6 or 8 syringes with D, = 2.5 cm and orifices with 

Do = 3,4 or 5 cm. Typical values for L, and us were L, = 1.0 cm and us = 1.0 cm s-l 
and these values were used for the most of the experiments. 

2.2. Experiments and data processing 

Two types of experiments, flow visualization and particle tracking, have been per- 
formed. In the first case fluorescein dye was used to visualize the vortex ring. For 
these experiments the water in the vortex generator was slightly dyed. The orifice 
of the generator was closed by an aluminium plate to avoid mixing during filling of 
the main tank with clear tap water. After the water tank was filled to a prescribed 
height and the fluid was at rest, before starting the experiment, the plate was carefully 
removed by pulling a wire, which was guided outside the tank by some pulleys. 

Dye visualization experiments were performed to obtain a qualitative picture of the 
flow field of the vortex ring. The effects of background rotation on the structure and 
dynamics of the vortex ring were very clear and dye visualization was very helpful to 
interpret the observed phenomena. Also some quantitative information, including the 
self-induced velocity and the dimensions of the vortex ring, was gathered from this 
type of experiment. 

In the second type of experiment, small passive tracer particles were used to 
determine the flow field in and around the vortex ring. We used both 100 pm 
and 250 pm particles, with specific weight (according to the static specification) of 
p = 1.0 f 0.02 g ~ r n - ~ .  In spite of the small difference in density compared to 
the density of tap water the particles sank to the bottom in a relative short time 
(approximately 15 minutes). In order to avoid this sinking we increased the density 
of the fluid in the tank and vortex generator up to p = 1.0325 gcrnp3 using ordinary 
kitchen-salt. Now the particles floated for a longer time, typically 1-2 hours, long 
enough for our experiments. 

The paths of the particles, which were assumed to follow the local flow field, 
were determined with the DigImage particle tracking technique developed by Dalziel 
(1992). From these particle paths the instantaneous velocity field at the position 
of the particles was derived. For subsequent analysis of the flow field, a spline 
interpolation was adapted to obtain the velocity field on a rectangular grid. Analytical 
differentiation of these expressions using the spline coefficients yielded the vorticity 
field. 

3. Numerical set-up 
3.1. Equations and numerical scheme 

The time-dependent Navier-Stokes equations, written in terms of velocity and pres- 
sure, for an incompressible viscous fluid have been integrated numerically. The fluid 
in which the flow evolves is subjected to a solid-body rotation, with the rotation 
vector f2 = Qk, k being the unit axial vector and SZ the rotation rate. The relative 
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flow in the rotating system satisfies the Navier-Stokes and continuity equations: 

1 
- = -Vp - -k x u + Du 
Dt Ro 

v . u  = 0, I 
with D / D t  = d/d t  + u V the material derivative. The equations have been non- 
dimensionalized by choosing suitable velocity (q) and length (L) scales, to be specified 
later. The Reynolds and Rossby numbers are then defined as Re = @L/v, Ro = 
%/252L, where v is the kinematic viscosity. 

In order to obtain a closer comparison between flow visualizations and numerical 
experiments, we also simulated the evolution of a passive scalar. The equation for the 
scalar concentration field T is 

- - V2T, 
DT 
Dt ReSc 
~- 

where Sc is the Schmidt number, defined as the ratio between the kinematic viscosity 
v and the scalar diffusivity IC. 

The equations have been written in a cylindrical coordinate system, with the axial 
direction aligned with k,  and discretized by second-order finite-difference schemes 
on a staggered grid. Details of the numerical method are given in other papers 
(Verzicco & Orlandi 1995, 1996) and only the main features are summarized here. In 
the three-dimensional case, in the limit of v --+ 0, the energy is conserved and this 
holds in the discretized equations. The system of equations is solved by a fractional- 
step method with the viscous terms computed implicitly and the convective terms 
explicitly; the large sparse matrix resulting from the implicit terms is inverted by 
an approximate factorization technique. At each time step the momentum equations 
are provisionally advanced using the pressure at the previous time step, giving an 
intermediate non-solenoidal velocity field. A scalar quantity Q, is then introduced 
to project the non-solenoidal field onto a solenoidal one. The large band matrix 
associated with the elliptic equation for Q, is reduced to a tridiagonal matrix using 
trigonometric expansions (cosFFTs) in the axial direction. The pressure is related to 
the scalar Qi. The third-order Runge-Kutta scheme, described by Verzicco & Orlandi 
(1996), is used to advance the equations in time. 

Finally, in cylindrical coordinates the equations are singular at r = 0. The advantage 
of using staggered quantities is that only the radial component of the momentum 
equation needs to be evolved at the centreline ( r  = 0), and for this component we 
calculate the evolution of qr = ru, instead of u, since the former quantity clearly 
vanishes on the centreline. 

3.2. Run parameters and convergence checks 
There are many quantities that are usually chosen to render the evolution equations 
non-dimensional. For vortex rings it is common to take the toroidal radius and 
the self-induced translation velocity as length scale and velocity scale, respectively. 
When the background rotation is added, however, depending on the magnitude of 
the rotation, the characteristics of the vortex ring change, and it will be shown that, 
for the highest rotation rates, the vortex ring does not form at all. In these cases the 
above quantities are not defined and the meaning of the non-dimensional parameters 
becomes unclear. The same problem is encountered if the circulation of the vortex 
ring is used instead of the self-induced velocity. Within this scenario, it is more 
convenient to use quantities related to the vortex ring generator. Although these 
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geometric parameters are only indirectly related to the final vortex structure, on the 
other hand, they are always well defined. In the present case, the radius of the orifice 
( R  = 0,/2) from which the fluid is ejected and the centreline ejection velocity ( U )  
have been chosen as length and velocity scales, giving the following definitions for 
the non-dimensional parameters: Re = UR/v and Ro = U/2QR. 

Once the scaling quantities are fixed, the run parameters can also be defined. The 
simulations have been performed in an axisymmetric domain of Rf = 5R and Lf = 8R 
in the radial ( r )  and axial (z) directions, respectively. The spatial discretization was 
uniform in z with Az = 0.031R while a non-uniform grid was used in r to achieve a 
fine resolution close to the edge of the orifice, where a thin vorticity layer rolls up 
initially. A coarser grid was used near the external cylindrical boundary in order to 
minimize the number of grid points in a dynamically passive region. The analytical 
transformation for the radial coordinate is 

r = Rf'l(v]) * r2(v]), 

Tl(l?) = &/Rf tanh(Br) tanh(Brm), 

(3.3) 

with 

tanh(a(y - 1)) tanh(a(y, - 1)) 
1 

where v]  is the radial computational variable uniformly spaced between 0 and 1. By 
using the values Rf = 5, & = 1, qm = 0.39 , a = f i  = 3, and 129 grid points we 
obtained a grid spacing of Ar = 0.024R near the axis, Ar = 0.017R near the orifice 
edge and Ar = 0.1R in the region of the external boundary where a free-slip boundary 
condition has been imposed. 

The time integration of the equations was performed with a constant time step 
At = 0.02R/U which yielded a value of the stability parameter (CFL) always below 
unity. 

Since the formation and the evolution of a vortex ring is a 'space developing flow' 
(i.e. a flow with the streamwise direction that is not a homogeneity direction), inflow 
and outflow boundary conditions have to be assigned in the axial direction. At the 
inlet (z = 0), for 0 < r < R we prescribed an axial velocity profile UZ(r)  modulated by 
a time dependence f ( t )  in such a way as to reproduce the injection of fluid through 
the nozzle of the experimental apparatus. Uz(r)  is specified by 

tanh[(R - r ) / 6 ]  
tanh[R/6] 

U,(r) = U (3.4) 

where 6 is the initial vorticity thickness of the inflow velocity profile and we have 
used 6 = R/20 t. The function f(t) starts at 0 and grows to unity by a cubic law 
in a time t = O.lR/U, then it is constant and equal to 1 for a time t = R/U and 
finally it goes back to zero in a time t = O.lR/U. Thus the total injection time is 
F = 1.2R/U, which corresponds to a dimensional time (t') of one second, according 
to the dimensional values of R and U used in the experiments (see 94.1). For z = 0 and 
R < r < Rf all velocity components are set to zero. Identical inflow conditions have 
been used for the passive scalar concentration T to simulate the flow visualizations 
in which dyed fluid is injected from the nozzle. 

Boundary conditions at the outlet are very important in space-developing flows. In 

t In fact the exact definition of the vorticity thickness is 6,, = [U/(aU,/ar)],,, = 6 tanh[R/b]; 
for values of 6 + R ,  however, tanh[6-'R] N 1, so that 6,, 2: 6. 
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FIGURE 2. Time evolution of the maximum azimuthal vorticity for Re = 484 and Ro = 1.65: 

385 x 257, ---- 257 x 129, ........ 193 x 97 grid. 

our simulations, we impose that the velocity components and the passive scalar are 
convected out of the domain according to the relation 

aQ aQ -+c--0, 
at aZ (3.5) 

with Q the convected quantity and C the convection velocity. In our simulations we 
have used the value C = 0.6, although it has been checked, by preliminary simulations, 
that the results are quite insensitive to the value of C. 

All axisymmetric simulations have been performed using a grid of 257 x 129 in the 
axial and radial directions, respectively. The grid independence of the results has been 
checked by repeating one typical simulation with a coarser (193 x 97) and a finer grid 
(385 x 257) and comparing the results. For this comparison the run parameters were 
Re = 484 (used for almost all simulations) and Ro = 1.65, since we have observed that 
for such high rotation rates small vorticity structures are created. The comparison is 
shown in figure 2 for the maximum azimuthal vorticity and it looks satisfactory. 

Although the hypothesis of axisymmetry was used for the most of the numerical ex- 
periments, some full three-dimensional simulations were performed (see $4.4). Owing 
to computer limitations, however, we were not able to achieve a satisfactory azimuthal 
resolution maintaining the grid of the axisymmetric cases. A good compromise was 
to reduce the axial and radial extension of the computational domain to 6R and 
4R and the grid to 193 x 97 therefore, without changing the radial and axial spatial 
resolution. This solution allowed us to use 64 grid points in the azimuthal direction, 
which was found sufficiently fine to resolve the scales of the flow. 

4. Results 
4.1. Preliminaries 

Before getting into the quantitative description of the results, it is helpful to show 
a couple of flow visualizations of the evolution of the vortex ring with and without 
background rotation, in order to appreciate the differences in the dynamics that will 
be studied in the successive sections. 

Figure 3 shows a sequence of photographs of a dye-visualization experiment of a 
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FIGURE 3. Dye visualizations of a vortex ring evolution at Ro = co and Re N 1000: (a)  t = 4, 
(b )  t = 8, (c) t = 12, ( d )  t = 16. 

vortex ring, in the absence of background rotation. The orifice at which the ring was 
created is located just outside the bottom part of this image and is not visible here. 
The heights of the images in figure 3 are approximately 12 cm. A sheet of dyed fluid 
is rolled up in a spiral as the core of the ring forms. The spiral form of this sheet 
is distinguishable since undyed ambient fluid from outside the ring generator was 
entrained in the vortex during the formation. 

As is seen in figure 3, the location and dimensions of the vortex ring are visualized 
by a dyed blob of fluid, which is sometimes called the vortex ‘atmosphere’ (Thomson 
1867). This ‘atmosphere’ is assumed to be a closed region of fluid for steadily 
propagating inviscid thick rings. However, this is true only at the final stage (figure 3 4  
since initially undyed ambient fluid is entrained from the rear into the centre of the 
vortex ring, even after the main part of the vortex ring has been formed. Over this 
distance the motion of the vortex ring is laminar in all experiments, and usually the 
motion remains laminar even when the vortex ring moves outside the observation 
area, until it approaches the free surface of the water in the tank. 

If a background rotation is added many additional effects arise, making the 
dynamics of the flow more complex. In figure 4 pictures at successive times of 
a dye visualization experiment of a vortex ring in a rotating fluid (Ro = 4.8) are 
shown. Initially, the vortex ring is created in the same way as in the case of no 
rotation. However, after the creation of the vortex ring is almost complete, a small 
depression is observed ahead of the vortex atmosphere (figure 4a). From this region a 
thin dye layer rolls up into a secondary vortical structure with circulation of opposite 
sign relative to the circulation of the primary vortex ring. This secondary vortex is 



Dynamics of a vortex ring in a rotatingjuid 223 

FIGURE 4. Dye visualizations of a vortex ring evolution at Ro = 4.8 and Re 2: 1000: (a) t = 7, 
(b )  t = 10, (c) t = 13, ( d )  t = 16. 

then advected by the local flow field of the primary vortex ring, increasing in strength 
during stretching around the vortical core of the primary vortex ring (figure 4b). 
Finally, the secondary structure is completely shed from the primary vortex while its 
localized vorticity soon diffuses due to viscosity (figure 4c,d). 

In figure 4d it is observed that the primary vortex ring was severely deformed 
during the shedding process, but it was still able to re-establish itself as a vortex 
ring after the shedding. Ahead of the primary ring, a third vortical structures is 
created in the same way the secondary vortex was formed earlier (see figure 4a) and 
the shedding process could eventually be repeated, if the primary vortex were strong 
enough. Usually, the viscosity weakens the vortex rings during the evolution and, after 
the first shedding, the primary vortex is too weak to shed a new structure. Besides 
now the motion loses its axisymmetry and it is less clear from a two-dimensional 
view how the flow field evolves three-dimensionally. In order to have a better picture 
of the phenomenon, and to understand the causes of this loss of symmetry, a few 
three-dimensional simulations have been performed and the results presented in $4.4. 

Summarizing the entire process, we have seen that the first effect of the rotation is 
to form a depression ahead of the vortex ring. From this depression, oppositely-signed 
vorticity develops and eventually rolls up to generate a counter-rotating secondary 
vortex ring which is shed behind the primary ring. The impulse of the primary ring 
is reduced by shedding of secondary structure and this is evidenced by the shorter 
distance traveled by the ring at t = 16 (figure 4d) compared to the case without 
rotation (figure 3 4 .  For successive times the rings can lose the axisymmetry and the 
flow shows complex three-dimensional structures. These features have been inferred 



224 R. Verzicco and others 

from flow visualizations that, if they showed the evolution of a passive scalar, might 
present a different behaviour. However, Orlandi & Verzicco (1993) have shown that 
there is a strong correlation between azimuthal vorticity and passive scalars if the 
flow remains axisymmetric; therefore, at least the gross features of the flow dynamics 
can be understood by flow visualizations. 

Except for these flow visualizations, in all laboratory experiments we have used 
fixed generation parameters for the vortex rings: L, = 1 cm, Us = 1 cms-’ (yielding 
an injection time t’ = 1 s), N = 6, and an orifice diameter of Do = 4 cm. This implies 
that an equivalent cylindrical column of fluid is injected through the orifice of length 
Lo = 2.4 cm and mean velocity U = 2.4 cm s-l. For the experiments the value of Re 
was thus fixed at Re = UR/v = 484, with v = 0.01cm2 s-l (the kinematic viscosity of 
water at ambient temperature). 

In order to be able to distinguish the effects of the rotation, we summarize the 
main features of the evolving vortex at Re = 484 in the absence of rotation, which 
will be considered as a ‘basic state’. Saffman (1975) and Sallet & Widmayer (1979) 
report that the formation process is completed after the ring has moved several ring 
radii (4-6) downstream from the generating orifice, and figure 5(a) shows the fully 
formed ring after about 5 ring radii. Its radius is R = 1.012R, the translation velocity 
u = 0.275U and the circulation r = 1.525UR, giving for the Reynolds numbers 
defined for the ring ReF = vR/v N 133 and Rer = r/v N 738. To give an idea of the 
thickness of the ring, we have also computed a ‘speed-effective core size’ a, (Saffman 
1978), namely the core size of the uniform-vorticity ring which matches the speed of 
the present ring. From the formula for the translation velocity of vortex rings (Kelvin 
1867) 

we obtain a, = 0.64R. 
Figure 5(b) shows a plot of the passive scalar distribution in the (r,z)-plane, 

obtained for Sc = 10. This value is certainly far from the Schmidt number of dye 
in liquids, which is typically O(500-1000); owing to resolution problems, however, 
such values are too large for the numerical simulations. Our aim is only to partially 
account for the different diffusivity between vorticity and passive scalar to study its 
effects. We should note that even though a relatively low Schmidt number has been 
used for the simulations, the passive scalar in figure 5(b) looks slightly under-resolved. 
However, this is not a problem for the dynamics since the scalar is only a passively 
convected quantity and does not interact with the flow dynamics which, in contrast, 
is very well resolved. We wish also to stress that the low Schmidt number used in 
these simulations prevents the passive scalar field from forming spiralling patterns 
like those in figures 3 and 4. Verzicco & Orlandi (1995) performed simulations at 
S c  = 100 and they observed spirals like those of flow visualizations; however, in 
that case only the initial formation of the vortex ring was simulated and a very fine 
spatial discretization could be achieved. In this case, in contrast, we focus more on 
the evolution of the vortex ring and a larger computational domain is needed. The 
same spatial resolution used by Verzicco & Orlandi (1995) in such a large domain 
would require a large number of grid points, which is beyond our present computing 
capabilities. 

For times larger than 17R/U, the ring only undergoes a slow viscous decay, 
translating with a velocity that decreases in time (u N 0.16U at t = 30R/U) due 
to viscous effects. Finally by comparing the ring parameters computed above with 
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FIGURE 5. (a )  Contour plots of azimuthal vorticity at t = 17, Re = 484 and Ro = co; Awe = 0.2, 
all values positive. (b )  Corresponding contour plots of passive scalar at S c  = 10, AT = 0.1. In this, 
and in all other numerical figures, the unit length is the radius of the nozzle. 

data given in Shariff, Verzicco & Orlandi (1994), we find that this ring is stable to 
azimuthal perturbations t, and this further justifies the axisymmetric nature of most 
of the simulations. 

In figure 4, we have seen that the evolution of the vortex ring is strongly influenced 
by the background rotation. Laboratory experiments and numerical simulations have 
shown that the flow dynamics can be roughly divided into two regimes: ‘low rotation’ 
(Ro 2 3) and ‘high rotation’. In the former regime, the rotation constitutes only a 
perturbation on the basic state, while in the latter the rotation dominates the flow 
and the vortex ring hardly evolves or even forms. In the next subsection we will 
discuss the low-rotation regime, while the second regime will be addressed in 0 4.3. 

4.2. Low-rotation regime 
As the ring starts moving, a layer of oppositely signed azimuthal vorticity forms 
ahead of the primary ring and this tends to slow down the vortex. In fact, without 
the secondary structure, any cross-section of the primary ring is moving because it 
is being convected by all of the other sections of the ring of circulation r .  When 
the counter-rotating secondary vortex is formed there is a loss of effective circulation, 
being the sum of the circulations of both rings. In other words, the motion of each 
cross-section of the ring is slower because the presence of the secondary ring in effect 
reduces the circulation everywhere along the ring. 

t The computation of the stability parameters implies also the calculation of a, the equivalent 
circular core radius of the ring with the same circulation, a1 the ‘inner core radius’ which maximizes 
the tangential velocity and e one of the parameters of the confluent hypergeometric function 
(Abramowitz & Stegun 1964) that specifies the vorticity distribution within the core. Saffman 
(1978) gives the way of computing these quantities, together with an estimate of the self-induced 
rate of strain G and critical Reynolds number Res with: 

Shariff et al. (1994) by direct numerical simulations found the critical Res to be N 18, while the 
present calculations are in the range Res = 15.5 that is below the region of growing azimuthal 
instabilities. 
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FIGURE 6. Time evolution of the axial position of the core centre of the ring ( Z )  for Re = 484 

Experimental results: x , Ro = co; 0 , Ro = 5.5. 
and: - Ro = a; ---- , Ro = 10; -......- , Ro = 7.4; ---, Ro = 5.5; -.-, Ro = 3. 

FIGURE 7. Contour plots of azimuthal vorticity at t = 7.26, Re = 484 and Ro = 10.0 (a), Ro = 7.4 
(d ) ,  Ro = 5.5 (c) and Ro = 3.0, vorticity increments Am = f0.25. In this and subsequent similar 
figures, solid lines denote positive values and dotted lines negative values. 

In figure 6, the time evolution of the axial coordinate of the centre of the core is 
shown for several values of Ro; for comparison the trajectory of the ring without 
rotation is given as well. Although data are presented only for Re = 484 the 
same behaviour has been observed for different Reynolds numbers that, even if 
changed by a factor of three, produced no changes in the trajectories comparable 
with those induced by rotation effects. It can be noticed that only a small part of 
the velocity decrease is due to the viscosity, while a larger effect is induced by the 
rotation. The graph also contains data plots of experimental trajectories obtained 
for two different cases with parameter values as in two of the numerical simulations. 
The agreement is very good, confirming that the numerical set-up mimics well the 
laboratory experiments. 

Figure 7 presents some azimuthal vorticity contour plots for the cases shown 
in figure 6. It appears that as the Rossby number decreases, the oppositely-signed 
structure, inferred from flow visualizations, strengthens, and thus causes a deceleration 
of the primary ring. The same phenomena have been observed by particle tracking 
experiments, and figure 8 shows one typical observation. From the particle paths of 
figure 8(a) the velocity field is computed (figure 8b) and this field is interpolated on 
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FIGURE 8. Particle trajectories (a), measured velocity (b) ,  interpolated velocity ( c )  and azimuthal 

vorticity ( d ) ,  of a vortex ring at Ro = 3.5 and Re = 484 and t = 6.  Vorticity increments Am = 0.5. 

a regular grid by splines (figure 8c) to compute finally the azimuthal vorticity field 
(figure 8 4 .  Although the vorticity shows some low-level noise, the secondary structure 
ahead of the primary ring is clearly discernible. Also note in figure 8(d) the vorticity 
in the tail, which was completely absent in the flow without background rotation. 

A simple explanation for the appearance of these additional vorticity structures is 
obtained by inspection of the azimuthal vorticity transport equation in the presence 
of background rotation: 

where the second term at the right-hand side represents the effect of the system 
rotation. Axial gradients of azimuthal velocity constitute a source for azimuthal 
vorticity. Consider first a vortex ring without rotation, the velocity field of which 
is shown in figure 9; owing to the velocity tangential to the core a parcel of fluid 
initially located close to the axis at position A in figure 9 will be transported to a 
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FIGURE 9. Velocity vectors and sketch of the boundary of the core of the ring for Re = 484 and 
Ro = co, the ring translates upwards. A and B are positions of parcels of fluid initially close to and 
far from the axis, respectively. 

location farther from the axis-turning around the front of the ring. In contrast, a 
parcel initially far from the axis at position B in figure 9 will be convected toward 
the axis-turning around the rear part of the ring. Now, if we introduce the effect of 
the rotation, considering the conservation of the angular momentum, wherever there 
is an outward radial motion the azimuthal velocity has to decrease, while it has to 
increase where the radial motion is directed inward. This increase is illustrated by 
figure 10(d) which shows a map of azimuthal velocity for a vortex ring at Ro = 7.4. 
Evidence of the strong positive swirling motion is also given in figure lob, which 
shows an intense axial vortex on the axis of symmetry that was also observed by Virk 
et al. (1994). The presence of strong positive swirl below the rising vortex structure 
was clearly observed in the experiments as well. The negative swirl, in contrast, is less 
evident and figure 10(d) shows that it is much weaker. This is not surprising, since by 
the conservation of the angular momentum, a radially displaced parcel of fluid has 
to preserve the quantity (rue + r2!2). Thus it turns out that an inward radial motion 
6 r ,  with respect to an initial position ro, will be accompanied by an increase of the 
azimuthal velocity that is larger than the corresponding decrease due to the same 
displacement 6r  performed radially outward. 

If one moves along a line parallel to the axis and passing through the maximum of 
ug ( r  _N 0.25 in figure lOd), one first encounters a positive axial gradient of azimuthal 
velocity (dugldz > 0), whereas further up it becomes negative. According to equation 
(4.2), this implies a region of positive azimuthal vorticity generation close to the axis 
and in the rear part of the ring, while in the front there is a region of negative 
azimuthal vorticity generation, consistent with the flow map of figure 10(a). For 
completeness, in figure lO(c) the radial vorticity component is also reported, which 
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FIGURE 10. Contour plots of cog (a), w, (b), o, ( c )  and ug (a), at t = 7.26 for Re = 484 and 
Ro = 7.4. Vorticity increments Ao = k0.25, velocity increments Av = f0.02. 
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FIGURE 11. Contour plots of pressure (a,b) and passive scalar (c,d) at t = 7.26, Re = 484 and 
SC = 10: (u,c) RO = a, (b,d) RO = 5.5. AT = 0.2, Ap = 0.015. 

remains always small in magnitude and does not contribute significantly to the flow 
dynamics. 

Note that the presence of some azimuthal motion like that of figure 10(d) is con- 
sistent with the decreased translation velocity of the ring according to the arguments 
of Virk et al. (1994, formula 33). 

An alternative way of explaining the deceleration of the ring is obtained by 
considering the behaviour of the pressure due to the presence of an anticyclone 
in front of the ring and a cyclone at its rear. Since pressure is lower in cyclones 
than in anticyclones, during the motion the ring has to counteract the effect of an 
adverse pressure gradient which exerts on the ring a force opposite to the direction of 
translation. That the pressure effectively behaves as described above has been verified 
by looking at its distribution for a vortex ring both in the absence of background 
rotation (Ro = co) and for the case at Ro = 5.5 (figure lla,b). The corresponding 
passive scalar distributions are shown in figure llc,d. In the former case the front 
of the ring is concave according to the classical picture given in many studies; in 
contrast, in the case with rotation the head of the ring shows the depression, already 
shown in flow visualizations, that is due to the pressure being higher at the front than 
at the rear. 

As the evolution of the ring proceeds, the interaction with the oppositely signed 
structure continues, and this has two main effects: the first is an outward radial motion 
of the ring; the second is a decrease of the peak vorticity due to cross-cancellation 
(viscous diffusion of both vorticity maxima). The first effect is easily explained if 
the coupled ring plus secondary structure is thought of as an 'unbalanced dipole', 
that would move radially outward along a curvilinear path since the positive lobe 



230 R. Verzicco and others 

0 10 20 30 40 

t 
FIGURE 12. Time evolution of the maximum azimuthal vorticity for Re = 484 and - , Ro = a; 

_ _ _ _  R~ = 10. ........ , R~ = 7.4. R~ = 5.5. R~ = 3. 

is stronger than the negative. Looking at equation (4.1) this outward radial motion 
could be used as a further argument to interpret the slowing down of the ring. In 
fact the flow is not two-dimensional and the positive radial motion is accompanied 
by an increase of the vorticity and a reduction of the cross-sections because of vortex 
stretching. This mechanism increases vorticity gradients considerably and enhances the 
diffusion, until for higher rotations the ring almost disappears completely. Evidence 
of this behaviour is given in figure 12 where the time evolution of the peak vorticity 
of the ring is shown for several rotation rates; again the curve for Ro = co is included 
for comparison. For early times t < 5, the peaks all have the same value because the 
secondary structure is still too weak to influence the core of the ring, but later the 
outward radial motion becomes evident and the peak vorticities increase, compared 
to the case at Ro = a, due to stretching. Of course, with the stretching, vorticity 
gradients are also augmented, and the increase of vorticity is followed by a rapid 
decrease due to diffusion. An extreme case of vorticity diffusion is represented at 
Ro = 3 .  In this case, the ‘knee’ in the curve at t e 27 indicates that the ring has 
almost disappeared by t E 27 and the peak vorticity plotted in the figure is no longer 
located in the ring, but rather in a structure in the tail left behind. The case at Ro = 3 
is a limit case in which the ring is still identifiable for most of the evolution; for lower 
Ro the ‘knee’ in the curve of maximum azimuthal vorticity moves to the left of the 
time axis (see figure 2) meaning that the vortex ring survives for a shorter time. For 
values of the Rossby number lower than about 1 the effects of the rotation become 
dominant from the beginning, and the next subsection is devoted to the study of this 
regime. 

All cases presented so far in this subsection have been computed using a fixed 
Reynolds number (Re = 484) since this was the value at which most of the experiments 
were performed. However, viscous effects play a large role in the flow dynamics and 
therefore it is important also to examine how the flow changes for increasing Reynolds 
numbers. Contour plots showing the evolution of the azimuthal vorticity for the case 
at Re = 1500 and Ro = 10 are displayed in figure 13. This ring evolution is essentially 
the same as that in the laboratory experiment shown in figure 4 where in fact the 
Reynolds number was 2: 1000. The first part of the evolution, i.e. the formation of 
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FIGURE 13. Contour plots of azimuthal vorticity at Re = 1500 and Ro = 10: (a)  t = 7.2, ( b )  t = 12.1, 
( c )  t = 16.9, ( d )  t = 21.8, ( e )  t = 26.6. v) Contour plot of passive scalar at Sc= 3.2 and t = 26.6. 
Vorticity increments Am = k0.5, passive scalar increments AT = k0.l. 

the oppositely signed structure, is essentially inviscid and simulations performed at 
different Reynolds numbers have revealed that the features of the flow are the same. 
However, the later stage of the evolution implies diffusion of vorticity and this is 
strongly dependent on viscosity. As the viscosity is decreased cross-cancellation of 
vorticity is prevented, and the oppositely signed vortex, instead of diffusing as in the 
previous case, lives long enough to be elongated by the strain field of the primary 
ring. During the straining process, in the interval between figures 13(b) and 13(c), the 
secondary vortex wraps around the primary one, becoming a thin vorticity layer that, 
being unstable, rolls up to form a secondary vortex moving in a direction opposite 
to the primary. This secondary ring should experience flow dynamics similar to that 
described above with the role of positive and negative vorticity reversed; however, 
this structure is smaller and weaker than the primary ring and is thus rapidly diffused. 
Also the primary ring is not strong enough to generate a new secondary ring, and so 
it continues its translation with a dynamics similar to that described for low Reynolds 
numbers. 

Figure 1 3 0  shows the distribution of passive scalar at the same time as figure 13(e). 
Note that most of the scalar is entrained in the core of the primary ring, but some of 
it is at the location where the secondary ring is disappearing. Despite the fact that this 
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FIGURE 14. Interpolated velocity field of a laboratory vortex ring at Ro = 0.605 and Re = 484: 

(a) t = 4, ( b )  t = 6. 

secondary structure has vanishing intensity, the scalar concentration almost equals 
that in the core of the primary ring. This is not surprising, since the scalars account 
for the whole history of the flow and at t N 17 the two rings were of comparable 
intensity. On the other hand, this fact has to be kept in mind when quantitative 
conclusions are drawn from flow visualizations: regions of fluid indicated by high 
concentrations of dye might not have any counterpart in terms of vorticity. 

4.3. High-rotation regime 

If the Rossby number is further decreased, rotation effects no longer act as just a 
perturbation of the basic state, but rather they dominate the flow. Figure 14 displays 
a typical experimental flow pattern obtained in the same way as figure 8(c), but 
showing completely different phenomena. In particular, the initial roll-up of the shear 
layer is accompanied by a column of fluid pushed ahead of the ring and by oblique 
wave-like structures confined in thin layers (figure 14a). 

Immediately after the forcing is stopped, the vortex ring almost disappears, and 
only the column and the wave structures are left in the field (figure 14b). In this 
case, the computation of the azimuthal vorticity field from the flow maps of figure 14 
does not result in a clear coherent vortex structure like that shown in figure 8d,  
since in this regime the vorticity magnitude of the flow structures is too close to 
that of the background noise. Therefore, to better understand the vorticity dynamics, 
we have carried out a numerical simulation for the same experimental conditions. 
Figure 15 shows that immediately after the ejection, oppositely signed vorticity 
develops (figure 15a), partly due to the presence of a no-slip wall and partly, ahead of 
the ring, due to the mechanism described in $4.2. In this configuration, the incipient 
vortex is shielded by intense oppositely signed layers, and the cross-cancellation 
becomes dominant (figure 15b). Therefore, the vorticity structures weaken in time 
until they are completely diffused. Indirect evidence for this behaviour is also given 
in figure 1 5 0  where it is seen that the passive scalar ejected from the nozzle does not 
show any roll-up symptoms, but rather it behaves, during the whole evolution, like a 
two-dimensional column. Again, we observe a strong depression in the front of the 
column due to the high pressure generated by the strong anticyclone formed at the 
beginning. 
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FIGURE 15. Contour dots  of azimuthal vorticitv at Re = 484 and Ro = 0.605: (a) t = 2.4, . ,  
( b )  t = 4.8, (c) t = 7.2, ( d )  t = 9.7, ( e )  t = 14.5. v) Contour plot of passive scalar at Sc= 10 and 
t = 14.5. Vorticity increments Aw = +0.4 (the minimum vorticity level is I w I= kO.1 to show the 
oblique shear layers) ; passive scalar increments AT = 0.1. 

Similarly to the experiment, figure 15 shows that the high-rotation regime introduces 
oblique shear layers of large axial extent (like those indicated by A, B and C in 
figure 15c) that were not evident in the low-rotation regime. It is tempting to identify 
these structures as inertial waves which allow the ring to radiate energy, and in this 
case only the linear terms of the Navier-Stokes equation should be important. This 
eventuality has been verified by performing two simulations at Ro = $12, one with 
the nonlinear terms cancelled out. Typical results are presented in figure 16, showing 
that while the vorticity near the nozzle is affected by the nonlinear terms, the wave 
patterns are almost indistinguishable, thus proving that effects of nonlinearity are 
negligible in the far field. 

The inertial wave radiation patterns in our simulation are somewhat complicated 
because the source is transient and not a simple oscillation. Greenspan (1968) shows 
that in the case of a single-frequency source (f*), the inertial wave patterns are 
particularly simple. He considers an oscillating disk in a rotating tank. Provided that 
G? > f */2 the problem is a hyperbolic wave one in which thin free shear layers are 
generated at an angle with the axis of rotation y = sin-'(f*/2G?). In our problem, in 
terms of the non-dimensional variables, the orientation angle y of the wave would be 

y = sin-'(Rof) (4.3) 

with f = f ' R / U .  
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FIGURE 16. Contour plots of azimuthal vorticity at Re = 484, Ro = 0.707 and t = 7.2: 
(a) full Navier-Stokes run, ( b )  linear run. Vorticity increments Am = f0.05. 

It is tempting now to use the relation (4.3) also to estimate the angles of the 
structures observed in the vortex ring at high rotation rates. The problem in applying 
(4.3) to the flow configuration of figure 15 is that there is not an obvious way to 
estimate f since in this problem the injection of flow is not periodic and there are 
many excited frequencies. What could be done however, is to focus on one structure 
(for example that indicated by B in figure 15c) and to measure its angle y. Then from 
equation (4.3) it is possible to compute the corresponding frequency fa. Since the 
way of injecting fluid is the same for all cases, and the Rossby number is the only 
parameter changing, f~ can be used to estimate the angle y of the corresponding 
structures for different Rossby numbers flows. From figure 15(c) the inclination of the 
structure indicated by B is y E 24.5", from which equation (4.3) yields f a  = 0.685. This 
value then has been used to predict the inclination of the corresponding structures 
formed in the flow at Ro = 0.8 and Ro = 0.48, obtaining respectively y0.8 = 33" 
and ~ 0 . 4 8  = 19.5'. The same angles were measured directly from the flow maps of 
figure 17, and this yielded y0.8 = 30" and y0.48 = 19" which are in good agreement 
with the estimated values. One could object that the choice of fa is quite arbitrary 
since in figure 15(c) there is a wide range of angles from which a frequency f can 
be computed. The same analysis has been performed using the inclinations of the 
structures indicated by A and C in figure 15(c) and the agreement between measured 
and estimated values of y for the other cases was as good as for B. 

We also would like to stress that, differently from Greenspan (1968), in the case of 
the vortex ring the flow is forced only during the injection phase; therefore, the angle 
of the structures changes in time (note that the comparison between the structures 
of figure 15c with those of figure 17a,b has been performed at a fixed time t = 7.2). 
In particular, figure 15 shows that as time increases, the apex angle of the structures 
tends to diminish in the same way as observed by Stevenson (1973) for transient 
internal waves in a stratified fluid. In his laboratory experiments, Stevenson (1973) 
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FIGURE 17. Contour plots of azimuthal vorticity at Re = 484 and t = 7.2: (a) Ro = 0.8, 
(b )  Ro = 0.48, (c )  Ro = 0.1. ( d )  Contour plot of passive scalar at Ro = 0.1. Vorticity increments 
Aw = k0.4, (the minimum vorticity level is I w I= +0.1 to show the oblique shear layers), passive 
scalar increments AT = 0.1. 

demonstrated that the angle of the internal waves created by an oscillating cylinder 
tends to decrease down to zero when the forcing stops. 

Finally we also tested the limit of very high rotation rates by performing a 
simulation at Ro = 0.1. In this case the predicted angle for the 'B' type structures 
is only 5", indicating that the shear layers then tend to be almost axially directed 
and the whole flow becomes two-dimensional. Alternatively, if in (4.2) we take 
the limit of Ro + 0 we obtain duO/az = 0; this is exactly the Taylor-Proudman 
theorem, predicting a two-dimensional motion independent of the axial coordinate. 
In fact, figure 17(c) shows the azimuthal vorticity field with very weak shear layers 
approximately parallel to the axial direction, in agreement with the predictions of the 
theory. Evidence of the two-dimensionality of the flow in this regime is also obtained 
from the passive scalar, now distributed in a column as shown in figure 17(d). 
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4.4. Three-dimensional results 

The final point that we address is the loss of axial symmetry observed in some of 
the laboratory experiments (see figure 44 .  In these cases it appeared that the ring 
developed an asymmetry which led one side of the ring to evolve faster than the 
other, yielding a translation of the ring with a certain angle with respect to the axis 
of rotation. In particular, it was observed that when the Reynolds number of the flow 
was low the inclination remained small and the flow maintained its axisymmetry. In 
contrast, for higher Reynolds numbers the inclination amplified in time and the flow 
degenerated to a fully three-dimensional configuration, as shown in figure 4. 

One possible explanation was the appearance of a Widnall instability. In the 
experiments, however, the evolution of the ring did not show the classical wavy 
signature with azimuthal wavenumber n, but rather an asymmetric mode with n = 1. 
To further test this point, we performed a three-dimensional simulation with an 
azimuthally corrugated nozzle in such a way to excite the first 16 azimuthal modes of 
the ring. After the ring formation, the energy of all azimuthal modes decayed in time 
confirming that a Widnall type instability is not excited even with background rotation. 

A second possibility is that the ring may have come out of the nozzle slightly 
unbalanced due to asymmetries in the generating device. This was tested in numerical 
simulations by letting the vorticity thickness (cf. equation (3.4)) be a function of the 
azimuthal coordinate S(0) = R/(20 + E cos 0). Using values of E up to 9 we were able 
to achieve differences between the vorticity peaks at 8 = 0 and 8 = n of up to 30% 
without observing any significant deviation of the direction of translation from the 
axial direction. This might seem very surprising, since one would expect that the most 
intense section of the ring (8 = 0) would induce the largest velocity on the weak part 
(0 = n) leading to a curved path of the ring with the centre of rotation in the plane 
0 = 0. The interpretation of the vorticity dynamics, however, reveals that this scenario 
is unlikely since vorticity differences along the axis of a vortex tube cannot be steadily 
maintained, as was shown by Verzicco, JimCnez & Orlandi (1995). In analogy with that 
case, in the unbalanced ring the vorticity difference will produce a pressure gradient 
along the toroidal axis that will drive the fluid from the portion of the ring with low 
vorticity toward the portion with high vorticity. The consequence is that the region 
with weak vorticity will be stretched while the strong counterpart will be compressed, 
leading to a situation that is opposite to the initial one. The viscosity of the flow 
damps this wave and after a few oscillations it forms a uniform-core vortex ring. 

Another suggestion about the occurrence of the asymmetry was that the vortex ring 
was initially not aligned precisely along the axis of rotation. This seems reasonable 
since it is difficult in the experimental set-up to detect angles of the order of 2 - 3" 
and a small deviation yields an angle between the direction of propagation and the 
direction of the rotation vector. Suppose that the rotation vector forms an angle E 

with the axial direction and that the vector lies in the semi-plane 8 = 80 (without 
loss of generality we assume 00 = 0). Let SZ, and SZr be the components of the 
rotation vector in the axial and in the radial directions, respectively, for which we 
have: 0, = !2 cos E, SZ, = 0 cos 0 sin E.  If E is small these relations are simplified to 

0, -12 and Q, - ~ Q c o s 0  (4.4) 

and this means that the effect of the axial rotation remains essentially unchanged 
while an asymmetric radial forcing is introduced. The fact that the term Qr has a 
cos8 azimuthal dependence means that an initially identical motion in the planes 
8 = 0 and 0 = n will be subject to Coriolis forces due to SZ, identical in magnitude 
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FIGURE 18. Contour plot of azimuthal vorticity for a vortex ring at Re = 1500 and Ro = 10: 
(a) t = 7.26, ( b )  t = 14.5, (c) t = 21.8, ( d )  t = 29. The initial angle of inclination between the 
direction of propagation and the rotation vector is 3". The straight dotted lines show the direction 
orthogonal to the orifice. Vorticity increments Am = f0.4. 

but opposite in direction; therefore an asymmetry is most likely to occur. Direct 
inspection of the phenomenon by numerical simulation has shown that it was indeed 
the case. Consistent with the flow visualizations, an initial small misalignment of only 
3", has a large effect on the flow as shown in figure 18, which shows results from the 
three-dimensional numerical simulation. 

5. Conclusions 
The main aim of the present paper has been to study the effects induced by 

background rotation on the dynamics of vortex rings. This vortex structure is in 
fact relatively simple and controllable; therefore its study can be pursued in detail. 
Nevertheless, the vortex ring dynamics is rich with interesting features pertaining to 
more complex flows, like round jets and swirling flows in combustion chambers, and 
can be thought of as a building block for such flows. 

The analysis has been performed by numerical and laboratory experiments, using 
the two methodologies as complementary tools. Results have shown that for low 
rotation rates Ro 2 3 the vortex ring is slowed down by the rotation and an 
oppositely signed structure forms in front of the ring. For low Reynolds numbers 
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(Re N 500) these structures diffuse one into another and the peak vorticity in the ring 
undergoes a rapid decrease. For higher Reynolds numbers (Re > 1000) part of the 
diffusion is prevented and the primary ring turns out to be strong enough to elongate 
the oppositely signed vorticity in a thin layer. This layer, being unstable, rolls up to 
form a secondary vortex ring that propagates in a direction opposite to the primary 
ring. 

Some of the phenomena described for this rotation regime have been observed 
also by Virk et al. (1994) in vortex rings without background rotation but with an 
assigned swirling flow. This is not surprising, because in their experiments the swirl 
was not confined to the core of the ring, but it extended to a larger flow region. 
The same arguments applied to understand our results could therefore be used in the 
interpretation of their experiments. 

For higher rotation rates the scenario changes. In particular, as the thin vorticity 
layer released from the orifice edge starts the roll-up process, intense oppositely signed 
vorticity is generated due to rotation. This implies that strong cross-cancellation has 
acted since the beginning, thus preventing the vortex ring from forming. At the same 
time, oblique shear layers of large axial extent are generated and they have been 
identified as features of inertial waves. Owing to the transient nature of the forcing, 
many frequencies are excited and this usually results in a band of angles y between 
the wave patterns and the axis of symmetry. Also, the angle y decreased in time, but, 
for a fixed time the dependence of y on the Rossby number was well described by 
the relation y = sin-l(Rof), f being the excitation frequency. 

The limit Ro = 3 between high- and low-rotation regimes has been fixed in this 
study by the observation that for Ro < 3 the peak azimuthal vorticity was no longer 
located in the core of the ring for the whole evolution. We wish to stress that this 
criterion is subjective and has been used mostly for ease of presentation of the results. 
In the experiments we have observed that there is a range of Rossby numbers where 
different phenomena belonging to the two regimes coexist and the flow dynamics is a 
combination of both. 

Finally we would like to mention that in some laboratory experiments the ring 
was observed to develop an asymmetry, which led one side of the ring to evolve 
faster than the other. This yielded a ring inclined at a certain angle with respect 
to the axis of rotation. For high Reynolds numbers (Re N 1000) the inclination 
amplified in time and the flow degenerated to a fully three-dimensional configuration. 
Three-dimensional numerical simulations of the phenomenon have shown that the 
reason for this loss of symmetry was a small initial misalignment between the axis 
of rotation and the direction of translation. The systematic study of this mechanism, 
however, will be the subject of a future paper. 

Before concluding, we wish to emphasize that we concentrated only on the case 
where the swirl was self-generated by the flow dynamics. Different kinds of swirl, for 
example supported only in the vortex core, could also be considered and they may 
have quite different properties from the one considered in this paper. The interest in 
these structures, however, would be mostly theoretical, since it is almost impossible 
to generate such vortices experimentally and therefore they are not likely to be found 
in real applications. 
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